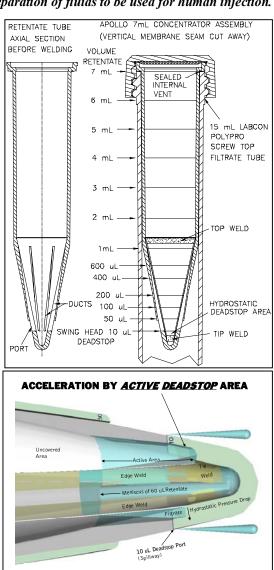
APOLLO[®] 7 mL

Technical Data Bulletin

High-Performance Concentrators For Quantitative Protein Separations

This product is offered for research use only. Not for clinical use nor for preparation of fluids to be used for human injection.

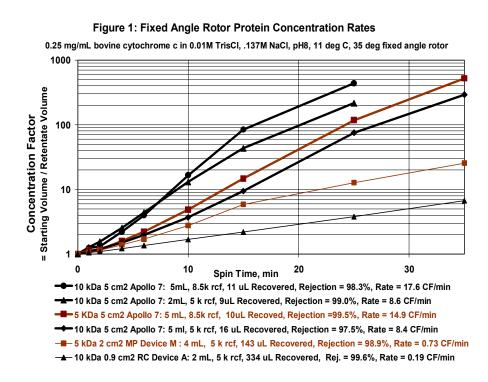

Optimized for Performance

The high-performance ultrafiltration of Apollo 7 mL is the result of accelerated conical focusing of retained proteins combined with improved use of regenerated cellulose membrane (US Patents 6,269,957; 6,357,601; PCT pending). The larger active membrane area reduces protein exposure to sticky plastic surfaces. The conical membrane shape extends below the level of the permeate ports. The active filtration area in the region below the ports supports a high filtration rate as the deadstop volume is approached. When the sample meniscus reaches the level of the permeate ports, hydrostatic pressure equalizes across the active membrane below the ports and filtration stops.

The steep angle of the cone assures continuous removal of denser retained protein as it slides down into the recovery cup formed at the tip of the cone. This depolarization improves performance compared to designs with membrane placed at shallower angles to the centrifugal field. Apollo focuses all the retentate into a single drop with minimal bounding surfaces. This facilitates direct pipette recovery without the need for an inverted spin recovery step. The Apollo conical design also accepts a larger sample volume for a given tube size than other devices which constrict the membrane in a separate thin lower chamber.

Applications

- Protein concentration and purification
- Desalting and buffer exchange
- Removal of unincorporated label
- · Removal or exchange of cofactors or metals
- Buffer replacement following protein elution from ion-exchange or HIC columns
- Concentration of peaks following size exclusion chromatography
- Biosafe concentration of virus from tissue culture media, with passage of media protein



Performance Data

Protein Concentrating Rate

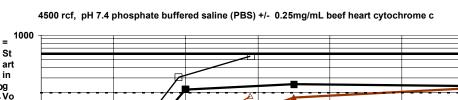
In **Figure 1**, concentration rates for Apollo 7 mL containing 5.2 cm² of a 10,000 Da-rated regenerated cellulose (RC) membrane are compared to that of a 4 mL capacity high-flux 2 cm² modified polysulfone (MP) commercial concentrator (Device M), and that of a 2 mL capacity high-recovery 0.9 cm² RC commercial concentrator (Device A). Both were selected with membranes of comparable quantitative rejection of cytochrome c. Device weights were followed with

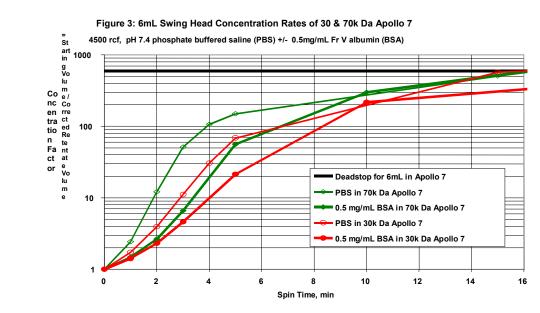
successive spins at 5,000 rcf. the maximum rating for Device A. The final recoverable retentate volume in each device was measured with an adjustable microvolume pipette as soon as possible after stopping the rotor and used to correct the weight estimates of volume in calculating the concentration factor curves. Apollo devices with 5 mL were also run at 8,500 rcf. By plotting log of concentration factor vs. time, a nearly linear measure of concentration rate is seen which is more revealing of performance than are asymptotic volume-

vs-time profiles. The higher concentration rate of the Apollo design and its ability to provide up to 1000-fold concentration without filtering to dryness are evident. Apollo 7 mL demonstrates an overall rate of 8.4 CF/min in reducing 5 mL of 0.25 mg/mL cytochrome c to 16 μ L in 35 min at 5,000 rcf, and 8.6 CF/min in concentrating 2 mL to 9 μ L in 25 min. This rate is an order of magnitude greater than the 0.73 CF/min obtained with Device M. It is 45 times faster than Device A when Apollo is run at the maximum speed of Device A. Note the further performance improvement by operating Apollo at its maximum suggested speed of 8,500 rcf. The rate increases to 17.6 CF/min, concentrating 5 mL to 11 μ L in only 25 min.

In Figure 2, initial buffer rates and protein concentration rates of Apollo in a swing head rotor are compared to a recently-introduced commercial polyethersulfone membrane device, designated PES 6, having similar retention rating and capacity. The bold 600x horizontal line and 200x dashed lines show the calculated maximal CF at deadstop of the respective devices with 6mL starting volumes. The 10k Da Apollo unit is seen to pass the competitor at 15 minutes as both

St art




Figure 2: 6mL Swing Head Concentration Rates of 5 and 10k Da Devices

devices reach 60 µL or 100x. From there, the hydrostatic deadstop brings Apollo to 92% of maximal concentration in another 14 minutes while the other device reaches only 58% of its maximal in the same time. The 10k Da Apollo 7 mL produces four times more CF in the same time than the 5k Da PES6 device of comparable cytochrome retention. Apollo's regenerated 5k Da and 10k Da cellulose membranes retain about 90% of their buffer flux up to 100x concentration (up to 25 mg/mL) of cytochrome, demonstrating that this sticky hydrophobic protein does not foul the cellulose skin. By contrast, the cytochrome c rate of the 5k Da PES6 device seen here is only half that the initial buffer rate of the same device.

Figure 3 compares

the performance of the 30k Da and 70k Da Apollo devices in concentrating 0.5 mg/mL bovine albumin to the initial buffer flux of the same devices. Both devices provide retentate concentrations above 150 mg/mL of albumin in 15 minutes.

Figure 4 shows the rate of the 150k Da Apollo 7 mL in concentrating 0.5 mg/mL bovine thyroglobulin (669k Da) at reduced rcf (2,000), which might be used to improve selectivity of removal of media protein from cultured virus.

Recovery of Dilute Cytochrome c

To challenge the retentate recovery of dilute protein from Apollo 7 mL aggressively, a study was performed with the lowest possible concentration of bovine heart cytochrome c which can be directly measured spectrophotometrically by redilution to only 0.5 mL. A stock solution of 0.25 mg/mL was prepared in pH 7.4, 0.01M phosphate buffered normal saline (PBS). 12 μ g were added to 5 mL of buffer (2.4 μ g/mL) in each of six devices containing a 5,000 Da-rated membrane (to maximize retentivity). This is a significant recovery challenge, representing 2.2 μ g of protein per cm² of active membrane in Apollo 7, roughly just one monolayer of protein compared to the active membrane area of the device.

Results are presented in **Table I**. The average concentration factor was 921 +/- 322. This represents a range from a high of 1351x for the device with 3.7 μ L final volume to a low of 400x for the device with 12.5 μ L final volume. As would be expected from film wetting, the 12.5 μ L retentate had the highest retentate protein recovery of 96%, while the 3.7 μ L volume contained only 58 % of the mass, with 28% more protein recovered in a 1 mL PBS rinse of the device.

Average retentate recovery was 79% +/-12%, with an average rinse recovery of 11% +/- 8%. **Combined retentate plus rinse**

recovery average was 90% +/-6%. Overall mass balance was 99% +/- 11%. Device integrity was confirmed by very low filtrate recovery, the 17% maximum corresponding to just 2 mOD above the blank, equal to the noise level of the spectrophotometer. These results support superior recovery of highly dilute protein using Apollo 7 mL over that reported by the manufacturer of Device A.

TABLE I
Recovery of 5 mL of 2.4 µg/mL Bovine Heart Cytochrome C
5k Da Apollo 7 mL, 8,000 rcf, 30 min, 15°C, pH 7.4 0. 01M PBS

		Pipet	Retentate		1 mL	Retentate +	Total	
		Recov.	Conc.		Rinse	Rinse	Filtrate	Mass
		Vol.	Factor,	Recov.	Recov.	Recov.	Recov.	Recov.
J	Device	μL	-fold	%	%	%	%	%
	A020	4.5	1111	85	10	94	17	111
	A014	6.55	763	76	11	87	17	104
	A012	5.35	935	79	7	85	0	85
	A008	5.18	965	80	7	87	0	87
	A016	3.7	1351	58	28	86	13	99
	A011	12.5	400	96	5	101	4	105
	Avg.	6.30	921	79	11	90	8	99
	Std. Dev.	3.18	322	12	8	6	8	10

Specifications

Volumes

 $\begin{array}{c|c} \underline{\text{Max. initial sample vol.}} \\ 35^{\circ} \text{ angle rotor:} \\ 5 \text{ mL} \\ 5 \text{ mL} \\ 5 \text{ mL} \\ 6 \text{ mL without decanting 10 } \mu \text{L} \\ \end{array}$

Maximum centrifugal Force

35° angle rotor: 8,500 rcf (200 psi with 5 mL) Swing rotor: 4,500 rcf rotor max.; < 8,500 rcf

Materials

Membrane: Regenerated cellulose Sample reservoir, vial and cap: Polypropylene copolymer

Chemical Compatibility

Dimensions

Active membrane area: 5.2 cm² Collection tube: Diameter, OD: 16.8 mm, 0.66 in Length (incl. cap): 123.4 mm, 4.86 in. Filter: Length of Filter : 73.4 mm, 2.89 in.

Diameter: 14.3 mm, 0.56in

Environmental Resistance

Temperature: 34.7 °C, 120 °F, max. Do not autoclave. Limit of pH: 1 to 14 (See Chemical Compatibility)

Common chemicals		$(\sqrt{-1} = \text{acceptable}; X = not reco$	mmena	led)	
Acids and Bases		Carbon Tetrachloride	X	Phosphate buffer (1M, pH 8.2)	\checkmark
Acetic acid (10%)		CHAPS (100 mM)	$\overline{\mathbf{v}}$	Polyethylene glycol	\checkmark
Ammonium hydroxide (10%)		Chloroform	<u>X</u>	(PEG400,10%)	
Formic acid (70%)		Diethyl pyrocarbonate (0.2%)	\checkmark	Propanol (70%)	\checkmark
Hydrochloric acid (1.0N)		Dimethyl formamide	\checkmark	Pyridine	\checkmark
Lactic acid (50%)		Dimethyl sulfoxide	\checkmark	PyroCLEAN™	\checkmark
Perchloric acid (5%)		Dioxane		Sodium carbonate (20%)	
Phosphoric acid (30%)		Dithiothreitol ((0.1 M)		Sodium chloride (2M)	
Sodium hydroxide (0.1N)		Ethanol (70%)		Sodium deoxycholate (5%)	
Sodium hydroxide (2.5N)	X	Ethyl acetate		Sodium dodecyl sulfate	
Trichloroacetic acid (10%)		Formaldehyde (5%)	N	(0.1M)	
Organic Solvents, Miscellar	neous	Formamide		Sodium thiocyanate (3M)	
Chemicals		Glycerin	N	Terg-A-Zyme™ (1%)	
Acetone	<u>X</u>	Guanidine HCI (6M)	N	Tetrahydrofuran	<u>X</u>
Acetonitrile (40% in 1% TFA)	\checkmark	Guanidine thiocyanate	N	Toluene	X
Acetonitrile		Imidazole (1M)	N	Tris buffer (1M, pH 8.2)	
Alconox™ (1%)		Lubrol PX (0.1%)	N	Triton X-100™ (0.002M)	
Ammonium sulfate (50%)	\checkmark	Mercaptoethanol (0.1M)	N	Tween-20™	
Benzene	X	Methanol		Urea (8M)	\checkmark
n-Butanol	N	Nonidet P-40 [®] (2%)			
CAPS (250 mM, pH 11.0)	\checkmark	Phenol (1%)	\checkmark		

Alconox is a registered trademark of Fabric Chemicals, Co. Nonidet P-40 is a registered trademark of Shell Oil Co. Terg-A-Zyme is a registered trademark of Rohm and Haas Co. Tween is a registered trademark of Atlas Powder Co.

Selection and Ordering of Devices

Protein Retention Rating

In contrast to conventional cutoff or Nominal Molecular Weight Limit >90% retentivity ratings used by other manufacturers, Apollo devices are more conservatively specified to retain >95% of proteins of the Quantitative Molecular Weight Limit (QMWL) rating, as shown in **Table II**.

Table II: Membrane Retention Dat	Retention of diafiltered solute					
QMWL * (Quantitative Molecular >95% retention of globular protei	5,000	10,000	30,000	70,000	150,000	
Equivalent Nominal Molecular Weight Limit	Equivalent Nominal Molecular Weight Limit ("Cutoff") >90% Rating			10,000	30,000	100,000
Challenge Solute	Molecular Weight					
1.0 A ₂₇₀ d(pC) ₂₁ oligonucleotide	10k Da, linear	n.a	77%	15%	3%	2%
1.0 A ₂₇₀ d(pC) ₂₄₋₃₄ oligonucleotide	11-16k Da, linear	n.a.	93%	71%	50%	14%
200bp DNA	130k Da, linear	99%	99%	98%	n.a.	n.a.
0.25 mg/mL bovine cytochrome-c	12k Da, globular	99%	99%	10%	n.a.	n.a.
1 mg/mL alpha-chymotrypsinogen	25k Da, globular	99%	99%	94%	4%	n.a.
1 mg/mL bovine carbonic anhydrase	29k Da, globular	99%	99%	98%	n.a.	n.a.
1 mg/mL ovalbumin	46k Da, globular	99%	99%	9 8%	17%	n.a.
1 mg/mL bovine serum albumin	67k Da, globular	99%	99%	99%	98%	29%
1 mg/mL yeast alcohol dehydrogenase	150k Da, globular	n.a.	n.a.	n.a.	97%	n.a.
1 mg/mL bovine IgG	150k Da, globular	n.a.	n.a.	n.a.	91%	n.a.
1 mg/mL bovine γ globulin	175-900k Da, globular	n.a.	n.a.	n.a.	96-99%	n.a.
1 mg/mL apoferritin, horse spleen	443k Da, globular	n.a.	n.a.	n.a.	>99%	9 8%
0.5 mg/mL bovine thyroglobulin	660k Da, globular	n.a.	n.a.	n.a.	n.a.	97- 99%

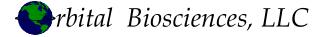
*Minimum protein molecular weight quantitatively (>95%) retained by the membrane, as determined by filtrate optical density. All proteins were dissolved in pH 7.4, 0.01M Phosphate-buffered saline solution (PBS). Retention is expressed as the ratio of filtrate OD at deadstop to that of the starting sample.

Product Name	QMWL*	Identification	Qty/Pk	Order No.
5k Apollo 7 mL	5k Da	Sample pack	2ea.	AP0700500
5k Apollo 7 mL	5k Da	Rack of filters in capped tubes	25 ea.	AP0700510
5k Apollo 7 mL	5k Da	10 racks, bulk bags of filters, tubes, caps	250 ea.	AP0700520
5k Apollo 7 mL	5k Da	Bulk bags of filters only	1000 ea.	AP0715031
10k Apollo 7 mL	10k Da	Sample pack	2ea.	AP0701000
10k Apollo 7 mL	10k Da	Rack of filters in capped tubes	25 ea.	AP0701010
10k Apollo 7 mL	10k Da	10 racks, bulk bags of filters, tubes, caps	250 ea.	AP0701020
10k Apollo 7 mL	10k Da	Bulk bags of filters only	1000 ea.	AP0715031
30k Apollo 7 mL	30k Da	Sample pack	2ea	AP0703000
30k Apollo 7 mL	30k Da	Rack of filters in capped tubes	25 ea.	AP0703010
30k Apollo 7 mL	30k Da	10 racks, bulk bags of filters, tubes, caps	250 ea.	AP0703020
30k Apollo 7 mL	30k Da	Bulk bags of filters only	1000 ea.	AP0715031
70k Apollo 7 mL	70k Da	Sample pack	2ea.	AP0707000
70k Apollo 7 mL	70k Da	Rack of filters in capped tubes	25 ea.	AP0707010
70k Apollo 7 mL	70k Da	10 racks, bulk bags of filters, tubes, caps	250 ea.	AP0707020
70k Apollo 7 mL	70k Da	Bulk bags of filters only	1000 ea.	AP0715031
150k Apollo 7 mL	150k Da	Sample pack	2ea.	AP0715000
150k Apollo 7 mL	150k Da	Rack of filters in capped tubes	25 ea.	AP0715010
150k Apollo 7 mL	150k Da	10 racks, bulk bags of filters, tubes, caps	250 ea.	AP0715020
150k Apollo 7 mL	150k Da	Bulk bags of filters only	1000 ea.	AP0715031
		Rack of 25 ea tubes and caps for Apollo 20 mL	25 ea.	AP0700000
		Case of tubes & caps for Apollo 20 mL	500 ea.	AP07TC

Terms and Conditions

Call, Fax or Email to obtain pricing. Otherwise, payment terms are net 30 days. F.O.B shipping point is Topsfield, MA. Shipping, handling and taxes due will be added to the invoice. Where partial deliveries are made, payment will be due on the portion delivered. Orders are subject to acceptance by Orbital Biosciences at current prices.

Claims


Claims for shipping damage are to be made to the transportation company. Obvious damage apparent on delivery should be noted on the delivery receipt. If damage is found after unpacking, the shipping company should be notified within 48 hours of delivery, requesting the preparation of a "Bad Order" report, to ensure damage recovery from the carrier. New England BioGroup or Orbital Biosciences should also be informed within 10 days of receipt of damaged goods or shortages. Lost shipment claims should be made within 30 days of the original order.

Returns

All returns must be made bearing a returned goods authorization number obtained from Orbital Biosciences. To obtain credit or exchange, requests must be made within 10 days of receipt of order.

Warranty

Orbital Biosciences warrants the quality of its products to be free of defects when used under the labeled intended conditions, and will replace any of its products that are defective. Since Orbital Biosciences cannot control the conditions of use of its products, we do not warrant suitability or optimal results in any specific application, nor that use of our products will not infringe on any patents. Orbital Biosciences furnishes its products For Research Use Only, not for use on humans, upon the condition that the purchaser assumes all risks and liabilities and that neither the manufacturer nor the seller shall be liable for any loss or damage, direct or consequential, arising from the use or inability to use our products.

4 Winsor Lane • P.O. Box 304 • Topsfield, MA 01983 • USA

Tel.: 978-887-5077 • FAX: 978-887-2906 • http://www.orbio.com • e-mail: orbio@shore.net

Apollo Tech Data Rev J.doc 5/11/01

© Orbital Biosciences, LLC